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Abstract
Structural studies by means of neutron diffraction of activated carbons, prepared
from a polymer of phenol formaldehyde resin by carbonization and activation
processes, with variable porosity, are presented. The neutron scattering data
were recorded over the range of the scattering vector Q from 2.5 to 500 nm−1.
The structure of activated carbons has been described in terms of disordered
graphite-like layers with very weak interlayer correlations. The model has
been generated by computer simulations and its validity has been tested by
comparison of the experimental and calculated intensity functions. Modelling
studies have shown that the model containing 3–4 layers each about 2 nm
in diameter accounts for the experimental data and that graphite layers are
randomly translated and rotated, according to the turbostratic structure. Near-
neighbour carbon–carbon distances of about 0.139 nm and 0.154 nm have
been determined. The Debye–Waller factor exp(−Q2σ 2/2) with σ = σ0

√
r

suggests a paracrystalline structure within a single layer. The value of the
interlayer spacing of 0.36 nm has been found from paracrystalline simulations
of the layer arrangement in the c-axis direction. The high quality of the
experimental data has enabled determination of the coordination numbers,
the interatomic distances and their standard deviations using a curve-fitting
procedure over the Q-range from 250 nm to 500 nm, providing structural
information about short- and intermediate-range ordering.

1. Introduction

Activated carbons are a class of carbonaceous materials with a very large internal surface area
and therefore they are used in a great number of applications in the chemical, pharmaceutical,
food-processing and other industries [1], to dechlorinate, decolourize, purify (e.g. the filtration
of wines, spirits and beers, to improve colour and flavour) and as catalyst supports in oxidation,
combination, decomposition and elimination reactions [2, 3]. These materials are usually
prepared by carbonization and activation of organic precursors such a phenolic resin, cellulose,
saccharose and natural products such as olive or peach stones. The atomic-scale structure of
these materials has been the subject of numerous x-ray, electron and neutron diffraction studies
and electron microscopy observations. Although porous activated carbons have been known
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of for a long time and have great commercial importance, their structure at the atomic level is
not fully understood.

Diffraction methods yield a fully statistical description of disordered samples based on an
analysis of the diffraction profiles. The structural information about the atomic arrangement
in two-dimensional layers and their stacking can be obtained either by the Fourier analysis of
well resolved peaks or from modelling studies. The first approach to the structure of activated
carbons, the so-called turbostratic model, was offered by Warren [4]. In such a model the
perfect graphite layers are stacked without spatial corrections. Warren derived the analytical
formula for the scattered intensity [4, 5], assuming disorder in the layer stacking. Then this
approach was developed by Kodera, Minami and Ino and applied to glassy carbons [6]. Mildner
and Carpenter [7] performed an analysis in real space, calculating the contribution to the
radial distribution function (RDF) resulting from the turbostratic structure with one interlayer
spacing. Analysing models of different sizes, based on the graphite structure, Alvarez and Dore
[8] suggested that a model composed of three to four layers can account for the experimental
data in the case of different carbons prepared from organic precursors. Additionally these
authors showed that when the size of the layer exceeds 2 nm the layer shape has no effect
on the single-layer diffraction pattern. Analysing the x-ray scattering data for glassy carbon
produced from a polymer of furfuryl alcohol, Ergun and Schehl [9] showed that a model based
on the quinoid structure can satisfactorily account for experimental RDF data. These findings
are in agreement with Pauling’s earlier suggestion [10] that properties of graphitic materials
can be explained by a structure in which the double bonds between adjacent carbon atoms
in a single graphitic layer do not resonate equally among all of the positions, but instead
are concentrated to a large extent at certain positions. Recently Burian et al [11] and Dore
et al [12] reported that the turbostratic model consisting of four layers with paracrystalline
distortion of the hexagonal network within a single layer reproduces very well all features of
the experimental RDFs. Because the RDF is only weakly sensitive to the number of layers,
we propose in this paper a different approach to the structure of activated carbons, prepared
from phenolic resin, which is based on analysis of the experimental data in reciprocal space.

The activated carbons were obtained from a polymer of phenol formaldehyde resin by
carbonization in nitrogen flow at 1273 K and then activated with carbon dioxide at 1073 K for
varying time periods. The degrees of activation, increasing with the time period, measured as
‘burn-off’—that is, the percentage weight loss—are 0%, 14% and 32%. In the present paper
the results for the sample with 32% ‘burn-off’ are reported, because there are practically no
differences in intensity within the 5% precision of the method between the samples with 0%,
14% and 32% ‘burn-off’ as shown in [11], and the results of simulations look very similar
for the remaining samples. The differences are visible only in the small-angle region, in
which the contribution to the intensity is due to the scattering coming from the pores created
in the samples during the preparation and thermal treatment processes [11]. The Cartesian
coordinates of the atoms have been generated by a series of computer simulations and the
model intensity functions have been calculated using Debye’s equation with the Debye–Waller
damping term. In the case of strongly disordered materials, it is recommended that the results
of model simulations are compared with the experimental data in both real and reciprocal
space in order to account for all features of the structure, which can have different effects on
the intensity and radial distribution function.

2. Theoretical background

The neutron scattering data were collected using the Liquids and Amorphous Materials
Diffractometer (LAD) at the ISIS pulsed neutron facility of the Rutherford Appleton Laboratory
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(UK) and are described in detail in [11, 12].
The samples studied in this work are partially disordered and their structure is, through

as assembly of ordered regions, randomly distributed in space. In the case of scattering by a
disordered system, the intensity distribution, averaged over all orientations, can be described
by Debye’s equation as follows:

IN(Q) = b2

〈
N∑
i=1

N∑
j=1

e−i(Q·rij )
〉

all orientations

= b2
N∑
i=1

N∑
j=1

sinQrij
Qrij

(1)

where: Q = 4π(sin θ)/λ is the scattering vector; 2θ is the scattering angle; λ is the wavelength;
N indicates the number of atoms; b is the coherent scattering length of carbon; and rij denotes
the distance between the ith and j th atoms.

For the modelling of the structure of the activated carbons, Debye’s equation, normalized
to one atom, was used. Attenuation of the intensity due to structural disorder (thermal vibration
of atoms and static disorder) is taken into account by including a Debye–Waller-type term and
finally the intensity per atom is given by

I (Q) = b2 1

N

N∑
i=1

N∑
j=1

sinQrij
Qrij

exp

(
−σ

2
ijQ

2

2

)
. (2)

The first diffraction peak, appearing at about 16 nm−1, contains information about the
interlayer spacing, its spread and the number of graphite layers in the samples. However, it
has practically no influence on the RDF as can be seen from inspection of figure 1 in which
the reduced RDF functions, computed over the Q-ranges of 0–500 nm−1 and 25–500 nm−1,
are shown. The reduced RDF function is expressed as a Fourier transform of the corrected and
normalized intensity I (Q):

d(r) = 2

π

∫ Qmax

Qmin

Q
I(Q)− b2

b2
sinQr dQ (3)

whereQmin andQmax indicate the range of the scattering vector values taken for computation
of the RDF. Comparison of the curves shown in figure 1 clearly shows that in order to learn
more about the layer stacking, structure analysis of the data in reciprocal space is necessary.

In the modelling studies presented in this work, the intensity of neutrons scattered by
atoms arranged according to the graphite structure is calculated using the Debye equation and
then disorder is imposed on such a structure. The unwanted small-angle component, which
represents the Debye volume scattering is reduced using the method proposed by Mitchell
[13]. The model is defined by the radius of the ordered region, the number of layers in
the stack, the values of the lattice parameters of graphite and the standard deviations of the
interatomic distances for atoms lying in the same layer (σintra) and in different layers (σinter ).
The computation routine allows one to vary the values of the graphite lattice constants a, c
and the σ -parameters for different atomic pairs. The generalized Debye–Waller factor with
σintra = σ0

√
r and σinter = σ1

√
�n, where�n = ni − nj (ni and nj label the layer positions

in a sequence) can be included assuming σ0 and σ1 as the adjustable parameters. Such a
form of σ results from the paracrystalline theory developed by Hosemann and his group [14].
The paracrystalline model is based on the assumption that the distances from any atom to
adjacent atoms fluctuate without statistical correlations and that these fluctuations propagate
proportionally to the square root of the interatomic distance according to the combination law
of independent probability distributions of the Gaussian type. The paracrystalline theory [15,
16] implies the so-called ‘α∗-relation’ which is expressed as√

Ng = α∗ (4)
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Figure 1. Reduced radial distribution functions calculated for two different Q-ranges, namely
0–500 nm−1 (solid line) and 25–500 nm−1 (full circles), respectively.

where 0.15 � α∗ � 0.20, N indicates the average number of the net-planes in the paracrystal,

g =
√〈
d2

〉 − 〈d〉2

〈d〉2

is the relative statistical deviation of the interplanar spacing d in the paracrystal, d is the
interplanar distance for the net-planes with the highest density of atoms and 〈 〉 indicates the
statistical average value of the quantity in the brackets. The relation given by equation (4) has
the physical meaning that real paracrystals have limited sizes controlled by a degree of disorder
indicated by g and that the surface net-planes have a statistical roughness of 0.15–0.20 of the
net-plane distance. In other words, large paracrystals are not strongly distorted. Additionally
the paracrystalline structure in the c-axis direction is simulated. This kind of defective one-
dimensional lattice is generated by computer simulations with Gaussian distribution of the
interlayer spacing. In order to obtain a good statistical representation of the normal distribution,
the intensity function is calculated many times and then averaged. The routine employed to
generate a series of random numbers with the Gaussian distribution is based on the central-limit
theorem [17]. First the random variable X′ with a Gaussian distribution and the mean value 0
and the variance 1 is generated according to

X′ =
( n∑
i=1

Xi − n

2

)/√
n

12
(5)

where Xi is the random variable with uniform distribution over the (0, 1) range. The values
of the translation vectors X′′, which are the random Gaussian numbers with the mean value µ



Paracrystalline structure of activated carbons 5549

and the standard deviation σ , are obtained as

X′′ = X′σ + µ. (6)

Moreover, in the next stage of modelling, the graphite layers can be randomly translated or
rotated in a limited interval according to the turbostratic model introduced by Warren [4]. The
atomic coordinates defined by the model with different types and degrees of disorder are used
to calculate the interatomic distances and the coordination numbers and then to compute the
intensity function.

3. Results

3.1. Modelling studies

The scattered intensities for the three samples investigated were corrected for background,
container and multiple scattering and then normalized using standard procedures [18]. The
resulting normalized intensity functions for all samples investigated were presented in our
earlier papers [11, 12]. The computation procedure consists of three main steps. The first
program creates the file with the Cartesian coordinates of atoms arranged according to the
graphite symmetry and the σ -parameters. In the next step, the interatomic distances and the
coordination numbers are computed and a σ -value is assigned to each distance, appropriately to
an assumed disorder. These data constitute the input file for the third program, which calculates
the intensity function. The intermediate step reduces the computing time appreciably because
the terms in equation (2), containing the same interatomic distances rij , are not calculated
for each atomic pair; instead they are accumulated and then multiplied by the appropriate
coordination number.

In the present work scattered neutrons were detected by a set of 14 independent and
fixed-angle detectors (seven pairs of detectors symmetically mounted on each side of the
instrument). The relative resolution �Q/Q varied from 11% for the forward angle (the
scattering angle of 5◦) to 0.5% for the backward angle (the scattering angle of 150◦) [18].
The resolution, especially at the backward-angle detectors, is comparable to what is achieved
by good powder diffractometers. The data recorded in the different detector banks were then
combined to cover the Q-range from about 5 nm−1 to 500 nm−1. The resolution �Q for the
resulting intensities varied from 1.1 nm−1 in the low-Q region (10–30 nm−1) to 2.5 nm−1

at Q = 500 nm−1. The estimated full widths at half-maximum (FWHM) of the diffraction
peaks change from about 9 nm −1 to 2.5 nm−1 in the low- and high-Q ranges, respectively.
The FWHMs indicate that the samples investigated exhibit a significant degree of disorder
and the recorded diffraction patterns are of a rather amorphous type. Comparison of the
estimated FWHMs and the instrumental resolution shows that the former does not produce a
significant effect on the present analysis because it is of 10–12% of the measured diffraction
peak widths.

First attempts were made to simulate the experimental intensity I (Q) using micro-
crystalline models with the graphite structure. The intensity function for the models with
the perfect graphite structure, and with the values of the lattice constants a = 0.2456 nm and
c = 0.6696 nm, containing eight, four, three and two layers with standard deviation of the
interatomic distances for atoms lying in the same and in different layers σintra = σinter =
0.005 nm, were calculated. The radius of the ordered region within a single layer was assumed
to be 1 nm. The results are compared with the experimental I (Q) function in figure 2. This
comparison shows that generally the calculated functions exhibit more structure, even in the
case of a model consisting of two layers, for which the diffraction maxima have much higher
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amplitudes than those observed experimentally beyond 80 nm−1. The overall shape of the
experimental functions is very similar to that for turbostratic structure [4–7, 9] where only
(00l) and (hk0) diffraction lines are observed. The absence of the general (hkl) reflections is
an indication of weakening in the –ABAB– graphite correlations. Nevertheless, the results of
this microcrystalline modelling are given in the present paper to emphasize the dependence of
the diffraction pattern on the number of layers in ordered regions and the effect of disorder on
the peak amplitudes. From inspection of figure 2, it can be seen that the size of the ordered
regions is limited in the c-axis direction and therefore models composed of no more than
3–4 layers will be considered for further simulations. Moreover, a shift of the first peak of
the calculated function towards a higher Q-value is observed, indicating that the interplanar
spacing in the carbons investigated is greater than that of graphite. This is in agreement with
the Alvarez and Dore findings that only a few (∼4) layers are compatible with the observed
diffraction patterns for most non-graphitizing activated carbons [8]. From the comparison
shown in figure 2, one can conclude that the model of the perfect graphite structure, distorted
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Figure 2. Comparison of the experimental (solid line) and simulated (dotted line) intensity functions
for the graphite-type structure containing two, three, four and eight layers. The σ -values for atoms
lying in the same and in different layers are equal: σintra = σinter = 0.005 nm.
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only by random displacement of the atoms from the equilibrium positions with the standard
deviation σintra = σinter = 0.005 nm, cannot explain the experimental observations. Thus
weakening of the interlayer correlations is necessary to reproduce the experimental functions.

In order to attenuate the interlayer correlations, the value of the standard deviation
σinter = 0.025 nm was chosen for atoms situated in different layers. The results of such
simulations for three and four layers are shown in figure 3. It can be seen that this additional
attenuation is not sufficient to explain disorder in an atomic arrangement in the carbon
investigated. Although the greater σinter (standard deviation for atoms lying in different layers)
leads to an overall attenuation of the calculated intensity function and reduces the number of
peaks, agreement with the experimental function is not satisfactory. All the peaks of the
calculated function for a model containing four layers are much higher than those observed
experimentally. The peak amplitudes of the intensity function calculated with the model with
three layers are smaller but not enough to fit the experimental function. From this comparison
it can be concluded that the model in which the interlayer correlations are attenuated by the
relatively high σinter -value for the atoms situated in different layers does not account for the
experimental data. Additionally, it is important to point out that the amplitudes of the peaks
in the experimental intensity function decrease and that their widths increase with Q. This
feature cannot be explained by a simple model with disorder of the thermal vibration type.
In fact, it is impossible to attenuate the peak amplitudes over the whole range of Q-values
assuming a simple Debye–Waller factor. As stated above, increase in the widths of the peaks
with Q is not significantly affected by the instrument resolution.
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Figure 3. Experimental intensity functions (solid line) and intensity functions calculated with
the model consisting of three and four layers with standard deviations σintra = 0.005 nm and
σinter = 0.025 nm (dotted line).
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In the next step of the modelling, the paracrystalline theory was applied. The
paracrystalline distortion is introduced assuming standard deviations of the interatomic
distances between atoms lying in one layer (σintra = σ0

√
r) and in different layers (σinter =

σ1

√
�n) with σ0, σ1 as adjustable parameters. The result of such a simulation for a model

consisting of three layers with σ0 = 0.00462 nm and σ1 = 0.015 nm is shown in figure 4. The
agreement between the experimental and simulated function presented in figure 4 is generally
good. Beyond 70 nm−1 all features of the experimental function can be reproduced using the
model with paracrystalline structure within a single layer. This kind of disorder causes increase
in σ with

√
r and leads to a loss of long-range ordering. This model explains the broadening

of the diffraction peaks which increase with Q2 according to [14–16]. At this stage of the
modelling it is essential to point out that the paracrystalline model describes the structure of
the carbons investigated reasonably well; nevertheless, some phase shift between the model
and experimental function can be seen in the bottom part of figure 4 in the Q-range from 250
to 500 nm−1.
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Figure 4. Experimental intensity functions (solid line) and intensity functions calculated with
the paracrystalline model consisting of three layers with σinter = 0.00462

√
r nm and σinter =

0.025 nm (dotted line).

The first diffraction peak (the (002) peak in graphite) corresponds to the interplane spacing
(c/2). The third peak (004) observed at about 38 nm−1, corresponding to twice the interplanar
spacing, is more spread out and is not well separated from the (100) one. This suggests
that the carbons investigated have more distorted interlayer stacking. The diffraction peaks
which are shown in figure 4 are asymmetrical on the high-Q side. This kind of asymmetry
is connected with the turbostratic model of carbon [4, 9]. Therefore, in the next step, the
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turbostratic structure with paracrystalline stacking of layers was simulated. Starting from the
graphite arrangement of atoms, the turbostratic structure with random translations or rotations
of layers was generated. Models containing three layers were considered. The translation
vectors, lying in the plane of a layer, were assumed to be random numbers with uniform
distribution over the (−a/2, a/2) and (−a/4, a/4) ranges. The random rotations of successive
layers were achieved by generation of the rotation angle ϕ as a random number with uniform
distribution over the (−π/2, π/2) and (−π/4, π/4) ranges. In figure 5 the comparison of
four different calculated intensity functions with the rotation angles and the translation vectors
from the (−π/4, π/4), (−π/2, π/2) and (−a/4, a/4), (−a/2, a/2) ranges, respectively, in
the Q-region from 0 to 100 nm−1 is shown. Beyond the 100 nm−1 limit all functions are
practically indistinguishable within the thickness of the line.
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Figure 5. Comparison of four different simulations with random translations from the (−a/2, a/2)
(solid line) and (−a/4, a/4) (dashed line) ranges and random rotation angles from the (−π/2, π/2)
(dotted line) and (−π/4, π/4) (dotted–dashed line) ranges in the Q-range from 0 to 100 nm−1.

Then the paracrystalline structure in the c-axis direction was generated. The one-
dimensional paracrystalline lattice was generated by successive translation vectors having
Gaussian distribution with the standard deviation σ and the mean value d as the adjustable
parameters. In the present calculations the Gaussian distribution of the interplanar spacing
with the mean value of 0.345 nm and the standard deviation σ1 of 0.025 nm were used. In
order to obtain a good statistical representation of the normal distribution it was necessary
to calculate the intensity function many times and then to take the arithmetic average. The
simulation based on the central-limit theorem which gives a series of random numbers with
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the Gaussian distribution was used [16] as described in section 2. After 200 simulations
the stable intensity functions were obtained. The results of such a simulation, based on the
turbostratic structure with paracrystalline stacking of layers, are shown in figure 6. Both peak
positions and amplitudes are precisely reproduced by the model constructed in the range of
Q from 0 to 250 nm−1. The model function matches the experimental intensity; however, a
small phase difference between the experimental and calculated functions remains for larger
Q-values (from 250 nm−1 to 500 nm−1). All model peaks are slightly shifted towards smaller
Q-values. In order to test the model by analysis in real space, the reduced RDF was computed
according to equation (3). The d(r) function obtained is compared with the experimental data
in figure 7. From the comparison of the curves shown in figure 7 it can be concluded that this
model does not explain the structure within the first coordination shell very well, because the
small peak observed in the experimental d(r) function at about 0.154 nm is not reproduced by
the simulation.
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Figure 6. Experimental intensity functions (solid line) and intensity functions calculated with the
turbostratic model with random layer translations from the (−a/2, a/2) range (dotted line) in the
0–250 nm−1 and 250–500 nm−1 ranges.

The occurrence of the small peak at about 0.154 nm in the reduced RDF can be explained
by referring to the concept of the quinoid structure [11]. This kind of structure was proposed by
Pauling [10]. The quinoid hypothesis is based on the assumption that each carbon atom forms
one double (shorter) and two single (longer) bonds. In hexagonal graphite the double bond is
assumed to resonate equally among the three positions leading to ideal hexagonal symmetry.
The quinoid structure is not a completely resonating structure and it and the graphite structure
can be regarded as extreme cases. Ergun and Schehl [9] and Mildner and Carpenter [7] have
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Figure 7. Experimental (solid line) and calculated (dotted line) d(r) functions, for the one-shell
model of the first coordination sphere.

considered four structures of a graphite layer as possible variants of the disordered carbon
model. These authors have shown that the experimental RDF, obtained from the x-ray and
reactor neutron scattering experiments, can be reproduced by disordered quinoid models;
however, the first RDF peak was not split because of a much lower Qmax-value.

In the present study the quinoidal distortion of the structure was introduced into the model
by splitting the near-neighbour interatomic distance into the two distances of 0.140 nm and
0.154 nm. The values of the two near-neighbour distances were adjusted and their weights
for each distance were evaluated taking the coordination numbers obtained by the two-shell
fit to the first coordination sphere [11]. The RDF peak positions r , the coordination numbers
N and the standard deviations of the interatomic distances σ are: r1 = 0.140 (±0.001) nm,
N1 = 2.41 (±0.25), σ1 = 0.004 (±0.001); r2 = 0.154 (±0.001) nm, N2 = 0.41 (±0.25),
σ2 = 0.005 (±0.001). Then the I (Q) function was calculated assuming two near-neighbour
interatomic distances using the same programs. The experimental and simulated curves are
compared in figure 8. This comparison shows that the agreement between the experimental
and simulated I (Q) functions is better than that for the one-shell model of the first coordination
sphere, especially in the high-Q range where both functions are in phase. It is noteworthy that
the quinoid model also improves the agreement between the experimental and calculated d(r)
functions. This model reproduces the small peak in the d(r) function in the vicinity of the
large peak at 0.141 nm. This is a consequence of a good agreement between the experimental
observation and the simulation in the 250–500 nm−1Q-range. The reduced RDF functions,
experimental and calculated with the model based on the turbostratic and quinoid structure,
are shown in figure 9.
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Figure 8. Experimental intensity functions (solid line) and intensity functions calculated with the
turbostratic and quinoid model (dotted line) in the 0–250 nm−1 and 250–500 nm−1 ranges.

3.2. The high-Q fitting procedure

Additional attempts were made to fit the experimental function in the high-Q region using
the non-linear least-squares procedure based on the Marquardt–Levenberg algorithm in which
ri , Ni and σi are allowed to vary [20]. It was necessary to smooth the experimental intensity
function before fitting because the raw intensity data were very noisy in the high-Q range
and the fitting procedure was unstable. The three-point Golay–Savitsky method was used in
the present work [21]. It was found that the fitting procedures converged when four- and six-
parameter sets (ri , Ni and σi) were taken for computation in theQ-ranges 300–500 nm−1 and
250–500 nm−1, respectively. The appropriate choice of the number of coordination spheres (or
fitting parameters) is the crucial point of the fitting method. At the beginning it is necessary
to test this number carefully by a process of trial and error in order to establish a minimal
number of free parameters for a givenQ-range. We have found that four and six coordination
spheres give the main contributions to the intensity in the 300–500 nm−1 and 250–500 nm−1

Q-ranges, respectively.
The interatomic distances and the coordination numbers of graphite with the quinoid

splitting of the first coordination sphere were taken as the starting parameters. The values of
these parameters are collected in table 1. The results of such a fitting are compared with the
smoothed experimental intensities in figure 10. The structural parameters obtained from the
fitting procedure are listed in table 1 together with the values of the starting parameters. The
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Figure 9. Experimental (solid line) and calculated (dotted line) d(r) functions, for the two-shell
model of the first coordination sphere.

Table 1. The results of the fitting procedure together with the starting parameters. The estimated
uncertainties are given in parentheses. r indicates the interatomic distance, σ is the standard
deviation of the interatomic distance and N is the coordination number.

Starting parameters Six-parameter sets Four-parameter sets

r (nm) N σ (nm) r (nm) N σ (nm) r (nm) N σ (nm)

0.141 2.5 0.005 0.141 (0.002) 2.54 (0.25) 0.004 (0.001) 0.140 (0.002) 2.68 (0.25) 0.005 (0.001)

0.154 0.5 0.005 0.155 (0.002) 0.30 (0.25) 0.005 (0.001) 0.154 (0.002) 0.19 (0.25) 0.005 (0.001)

0.244 6 0.007 0.245 (0.002) 5.81 (0.50) 0.006 (0.002) 0.244 (0.002) 7.04 (0.50) 0.006 (0.002)

0.282 3 0.008 0.280 (0.002) 4.22 (1.00) 0.007 (0.002) 0.280 (0.002) 2.42 (1.00) 0.007 (0.002)

0.375 6 0.01 0.373 (0.005) 8.29 (2.00) 0.008 (0.002) — — —

0.425 6 0.01 0.426 (0.005) 6.64 (2.00) 0.009 (0.002) — — —

discrepancy factor R calculated as

R =
{∑

i

[Iexp(Qi)− Ical(Qi)]
2

/ ∑
i

Iexp(Qi)
2

}1/2

(7)

is about 2%. The interatomic distances r , their standard deviations σ and the coordination
numbers for the first coordination sphere are very close to these derived from an analysis of
the data in real space [11] and to the parameters of the model proposed in this paper. Larger
discrepancies are observed for the third-neighbour coordination numbers. These differences
can be explained by the relatively small interatomic distances within the 0.245 nm and 0.280 nm
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coordination spheres. The fitting procedure cannot separate these two contributions precisely,
as they contribute to the scattered intensity with similar frequencies. The remaining parameters
agree well with the results shown in table 1 in our previous paper [11]. Comparison of the
experimental and computed curves for the best-fit parameters shows that the agreement between
them is good. All features of the experimental intensities (amplitudes and frequencies) can be
reproduced satisfactorily by the model based on the graphite-like structure with paracrystalline
distortions of the lattice resulting from the random distribution of the quinoid elements. It is
essential to point out that an increase in the σ -value has also been found by using the curve-
fitting procedure in reciprocal space which is an indication of the paracrystalline nature of the
lattice distortion.
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Figure 10. Comparison of smoothed experimental (solid line) and best-fit (dotted line) intensity
functions—the four-parameter fit in theQ-range from 300 nm−1 to 500 nm−1 and the six-parameter
fit in the Q-range from 250 nm−1 to 500 nm−1.

4. Discussion

The intensity functions for the samples with 0%, 14% and 32% ‘burn-off’ are very similar
above the Q-value of 20 nm−1. This suggests that the local structure within a single layer
is not affected by the ‘burn-off’ process. The same conclusion was also reached by Gardner
et al for carbons prepared from olive stones [22]. It is well known that an activation process
leads to the creation of the different size pores in carbon materials [1]. Taking into account
that the degree of ‘burn-off’ has a practically unobservable effect on the intensity over a
wide-Q range, the question arises of how the structure of the carbons investigated is modified
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during the activation process. The present results suggest that the ordered regions remain
practically unchanged within the precision of the method and that probably the atoms lying
within cross-links between ordered regions are removed because the structure of the cross-
links is expected to be less ordered and the contribution coming from the cross-links should
be much weaker.

We use the paracrystalline concept to obtain a better fit to the experimental intensities.
The paracrystalline nature of the two-dimensional network (within a single atomic layer) is
associated with the presence of two bond lengths in the carbons investigated and also causes
broadening of the diffraction peaks [11]. Such a network can be simulated by packing atoms
of the same size in a regular, two-dimensional hexagonal structure. If a certain number of
the atoms are replaced by larger atoms, statistically distributed over the network, the network
exhibits paracrystalline disorder as explained in section 2 [14, 15]. For the carbons investigated,
the lattice distortion parameter g which has been found to be 0.034–0.038 leads to an average
number of net-planes in the paracystal N = 16–19. In the planar graphite structure the α∗-
relation (equation (4)) is related to the rows of atoms with the highest atomic density (here
{11}) and finally the size of the planar paracrystal is estimated to be 1.9–2.3 nm [15, 16], which
is in good agreement with the assumed model size. This model explains also the broadening
of the peaks because disorder increases with the interatomic distance r . The occurrence of the
small peaks in the d(r) functions of about 0.154 nm can be explained by the concept of the
quinoid structure proposed by Pauling [10]. The paracrystalline nature of the two-dimensional
network within a single layer can be related to the quinoid model with random distribution such
that the longer near-neighbour interatomic distances produce the paracrystalline distortion of
the lattice.

In the case of the carbons investigated, the quinoid deformation of the hexagonal structure
has an effect on the stacking of the layers. Pauling concluded that the quinoid structure permits
better packing of the superimposed layers and a consequent decrease in the interlayer spacing
and an increased stabilization of this structure by Van der Waals interaction between adjacent
layers. A local decrease in the interplanar spacing is related to the random distribution of
the quinoid elements in the hexagonal network and suggests local curvature of the layers.
It was also suggested that the distorted quinoid rings are likely to be found in the vicinity
of defects because their distortion is less under strain than that of complete resonating rings
[9]. This leads to additional stabilization because of the smaller bond angle and the reduced
bond-compression strain [10, 23].

From the amplitudes of the d(r) peaks one can conclude that the quinoid structure coexists
with that of a single graphite sheet. In the quinoid structure each atom is bonded to its three
neighbours by one double and two single bonds. In the observed d(r) functions the peaks at
about 0.154 nm are smaller than the main near-neighbour peak at 0.139 nm. Therefore, in
the proposed model only an admixture of the longer interatomic distances is assumed. Such
conclusions are drawn also from the analysis of the data in reciprocal space.

The presence of a significant proportion of sp3 bonds is not expected for such prepared
carbon materials [24, 25]. It was concluded that the sp3 bonds are not stable at temperatures
above 1300 K and it is reasonable to assume that in the carbons investigated the content of
tetrahedrally bonded carbon atoms is practically negligible, if they are present at all. It seems
to be of interest to consider whether the presence of non-graphitic elements, e.g. five- or
seven-membered rings, can be deduced from the present studies. Harris and Tsang [24],
Harris [26] and Harris et al [27] suggested the presence of fullerene- and nanotube-like
atomic arrangement in non-graphitizing carbons on the basis of the high-resolution electron
microscopy observations. On the other hand, the diffraction pattern of the C60 fullerene, shown
in figures 1 and 2 in [28], differs from those presented in the present paper. The RDF obtained by
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Li and co-workers [28] exhibits the near-neighbour peak at 0.144 nm. The authors reproduced
this peak assuming double- and single-bond lengths of 0.139 and 0.146 nm, respectively. These
values are in good agreement with predictions of ab initio molecular dynamics simulations
yielding the average lengths of 0.140 and 0.145 nm [29]. In the present work the observed
position of the first peak is clearly closer and the single-bond length 0.154 nm is significantly
longer than the value found in [28, 29]. Significant differences between the neutron diffraction
patterns and the RDFs of carbon nanotubes and activated carbons has been reported in [30].
Therefore, the occurrence of fullerenes and nanotubes in the pure form is not expected in
activated carbons. However, the paracrystalline distortion of the hexagonal network can also
be produced by random distribution of the five- and seven-membered rings, loading to local
curvature of a single graphene sheet. The loss of structural coherence beyond about 2 nm
along the graphene sheet is also most probable due to the curvature of sheets and distribution
of curvatures in the sample according to suggestions made in [31]. Taking into account these
suggestions, the presence of locally curved carbon sheets cannot be completely ruled out,
although their occurrence in a significant proportions cannot be directly deduced from the
present neutron scattering data.

5. Summary and conclusions

The neutron diffraction studies were performed on a series of activated carbons, obtained
from a phenolic polymer resin. The pulsed neutron source permitted the diffraction data to
be measured for scattering vectors up to 500 nm−1. The structural analysis was made in
reciprocal space using Debye’s equation with the appropriate Debye–Waller factor to compute
the intensity function I (Q). The experimental data recorded using the pulsed neutron facility
and the time-of-flight method allowed the experimental intensity to be extended to a high Q-
range—much higher than achieved in any other diffraction studies on graphite-like carbons.
In the current interpretation method the intensities were calculated on the basis of a model
in which the atomic Cartesian coordinates were taken to obtain the interatomic distances in
the Debye equation. This approach differs from that proposed by Warren and Kodera and by
Minami and Ino who used analytical formulae [4–6]. The curve-fitting method can be applied
for a high Q-range yielding reliable structural parameters for the interatomic distances, their
standard deviations and the coordination numbers for 4–6 coordination spheres. The structure
of activated carbons is based on the disordered graphite-like model with very weak interlayer
spatial correlations. Modelling studies have shown that a model consisting of 3–4 layers each
about 2 nm in diameter accounts very well for the experimental data.

In order to reproduce the observed decrease in intensity and broadening of the diffraction
lines, the Debye–Waller factor, exp(−Q2σ 2/2) with σ = σ0

√
r , was introduced. This

form of the attenuation factor is predicted by the paracrystalline theory based on the law
of propagation of disorder in such lattices. The results support the turbostratic structure in
all samples investigated, with paracrystalline structure along the c-axis. The paracrystalline
structure within a single layer and in the layer stacking is related to the presence of quinoid
elements. These findings are in agreement with the analysis of the experimental data in real
space performed previously [11], but more precise information about the range of ordering
along the c-axis can be deduced from the present analysis.

It is essential to point out that the simulation method developed, which uses the Cartesian
coordinates of the atoms in the model, could also be used in the case of any model for which
the Cartesian coordinates are known, such as those of fullerenes or nanotubes, in both single-
and multi-walled forms.
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